An Online Sparsity-Cognizant Loop-Closure Algorithm for Visual Navigation

نویسندگان

  • Yasir Latif
  • Guoquan Huang
  • John J. Leonard
  • José Neira
چکیده

It is essential for a robot to be able to detect revisits or loop closures for long-term visual navigation. A key insight is that the loop-closing event inherently occurs sparsely, i.e., the image currently being taken matches with only a small subset (if any) of previous observations. Based on this observation, we formulate the problem of loop-closure detection as a sparse, convex `1-minimization problem. By leveraging on fast convex optimization techniques, we are able to efficiently find loop closures, thus enabling real-time robot navigation. This novel formulation requires no offline dictionary learning, as required by most existing approaches, and thus allows online incremental operation. Our approach ensures a global, unique hypothesis by choosing only a single globally optimal match when making a loop-closure decision. Furthermore, the proposed formulation enjoys a flexible representation, with no restriction imposed on how images should be represented, while requiring only that the representations be close to each other when the corresponding images are visually similar. The proposed algorithm is validated extensively using public real-world datasets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Online Loop-Closure Detection via Dynamic Sparse Representation

Visual loop closure detection is an important problem in visual robot navigation. Successful solutions to visual loop closure detection are based on image matching between the current view and the map images. In order to obtain a solution that is scalable to large environments involving thousands or millions of images, the efficiency of a loop closure detection algorithm is critical. Recently p...

متن کامل

Mobile Robot Online Motion Planning Using Generalized Voronoi Graphs

In this paper, a new online robot motion planner is developed for systematically exploring unknown environ¬ments by intelligent mobile robots in real-time applications. The algorithm takes advantage of sensory data to find an obstacle-free start-to-goal path. It does so by online calculation of the Generalized Voronoi Graph (GVG) of the free space, and utilizing a combination of depth-first an...

متن کامل

Sparse optimization for robust and efficient loop closing

It is essential for a robot to be able to detect revisits or loop closures for long-term visual navigation. A key insight explored in this work is that the loop-closing event inherently occurs sparsely, i.e., the image currently being taken matches with only a small subset (if any) of previous images. Based on this observation, we formulate the problem of loop-closure detection as a sparse, con...

متن کامل

Robust Multimodal Sequence-Based Loop Closure Detection via Structured Sparsity

Loop closure detection is an essential component for simultaneously localization and mapping in a variety of robotics applications. One of the most challenging problems is to perform long-term place recognition with strong perceptual aliasing and appearance variations due to changes of illumination, vegetation, weather, etc. To address this challenge, we propose a novel Robust Multimodal Sequen...

متن کامل

Generalized Iterative Thresholding for Sparsity-Aware Online Volterra System Identification

The present paper explores the link between thresholding, one of the key enablers in sparsity-promoting algorithms, and Volterra system identification in the context of time-adaptive or online learning. A connection is established between the recently developed generalized thresholding operator and optimization theory via the concept of proximal mappings which are associated with non-convex pen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014